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Abstract. Gas leakage can generate a considerable number of losses in environmental and economic terms. Constant
monitoring of deep-water wells is an important safety tool to enable fast and proper responses, prevent the conditions’
aggravation, and avoid unnecessary costs. A qualitative approach is to install video cameras in the subsea environment
to track possible leaks. Automation of this process is possible by using image analyses algorithms. In this context,
Convolutional neural network (CNN) is a methodology part of the Artificial Intelligence framework, capable of extracting
relevant features from images. Therefore, the objective of this work is to develop a tool to detect fault in the subsea
pipelines using the presence of bubbles in the images as an indicator. Computational Fluid Dynamics simulations were
developed aiming to reproduce subsea gas leakages. The volume of fluid (VOF) method is employed to model the two-
phase gas-liquid flow, in which bubbles are released into stagnant water with several velocities and from different pipelines
orifice diameters. The frames obtained from the simulation images served as input to the CNN. The methodology is
intended to distinguish between a scenario of normality (no leakage/bubble) and abnormality (leakage/bubble). The
classification task of bubble presence or absence performed by the CNN reported high accuracy (99 %). No false alarms
(fall-outs) in all sets and high specificity (true negative rate) and precision of the classifier were found. Good accuracy
supports its potential as fault detector. It could be extended to other applications in the field of Fault Detection and
Diagnosis, not only limiting to this scope.
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1. INTRODUCTION

Subsea oil well drilling activities and their transportation by pipelines are susceptible to incidents of significant envi-
ronmental and economic impact, especially if in decommissioning state and/or after a long time of service (Nazir et al.,
2008). Olsen and Skjetne (2016) classify these incidents in seep, which could occur naturally or due to drilling activity;
leaks, may not be detected if of small scale; rupture, an event of greater impact, but with control; blowout, a major release
with loss of control. Eventually, cracks in these wells pipelines may evolve from small leaks to large material release.
Containing the leakage on early stage can be the key to avoid a disaster. Therefore, the use of risk assessment techniques
is justified, one of which is ROVs (remotely operated vehicles), which register these events in loco. With the leakage
visualization, a fast and safe response can be performed, allowing the technicians a complete evaluation of the situation,
especially for events that pose great danger.

Fault detection and diagnosis (FDD) have become a central point to the process industry because the ramping op-
erations complexity demands loss prevention and environmental safety maintenance. In the FDD terminology, fault is
a system state in which there is a deviation from the accepted operational range. It is important to note that detection
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denotes whether the fault has occurred, while diagnosis points out which fault is, its type, and its magnitude (Isermann,
2006; Chiang et al., 2001). Venkatasubramanian divided the methods into three: quantitative model-based (Venkatasub-
ramanian et al., 2003b), qualitative models and search strategies (Venkatasubramanian et al., 2003a), and process history
based (Venkatasubramanian et al., 2003c). One of the latter techniques is artificial neural networks (ANN), a data-driven
approach that recognizes patterns without modelling the system.

More precisely, ANN are subsymbolic processing structures that vaguely resemble brain learning operation. They
integrate the machine learning algorithms (ML). Information is learned through the connections between inputs and
outputs in the nodes (neurons) of the ANN, organized in layers, whose dynamic response is given by external stimuli
(adjustment of weights and activation function). The first neural networks that gained massive use were the multilayer
perceptron (MLP) networks (de Souza Jr., 1993). More recently, these techniques have evolved to deep learning, in which
there are more layers, requiring fewer data pre-processing (LeCun et al., 2015).

Convolutional neural networks (CNNs) have been increasingly used in image processing, solving more efficiently and
speedily classification problems (Krizhevsky et al., 2012; LeCun et al., 1989), object detection (Sun et al., 2018), seg-
mentation (Schäfer et al., 2019), and, even, identification of pipeline failures by visual inspection in subsea environments
(Petraglia, 2017). CNNs can accommodate the large amount of information coming in the form of tensors, including not
only images, but also signal analysis from machinery (Jiao et al., 2020; Zhang et al., 2020; Cheng et al., 2021), spatial and
time-domain data transformed (Wu and Zhao, 2018; Ge et al., 2021), acoustic (Wang et al., 2019) and speech recognition
(Abdel-Hamid et al., 2014).

In the present era, the industry is entering the fourth industrial revolution, i.e., there is an integration of cyber-physical
systems and the advancement of communication and information systems between machines, sensors, and devices. Fur-
thermore, a tremendous amount of process knowledge is collected, enabling the faults detection and diagnosis immedi-
ately. Therefore, convolutional neural networks can support the decision-making process, as they are capable of coping
the large amounts of image parameters (pixels) and extracting their features, outperforming traditional image processing
techniques. The aim of this work is to classify and quantify simulated oil leakage employing convolutional neural net-
work, an innovation in the field of FDD. This paper is divided as follows: how the investigation was developed, including
evaluation metrics and the models used are presented on Section 2., results obtained from the experiments are discussed on
Section 3.. Finally, Section 4.closes it with conclusions and future perspectives.

2. METHODOLOGY

2.1 Computational Fluid Dynamics

Computational Fluid Dynamics were employed by means of the ANSYS Fluent software (Moreira and Bento, 2020).
A reduction model was chosen to describe the conditions using a 40 cm height water column and cropping 20 cm of width
as seen in Fig. 1. This step aimed to evaluate the two-phase flow (water and air) by air bubbles in different velocities v
and different pipelines crack diameters d as seen in Tab. 1. Air was used to validate an experimental reduction model.

Figure 1: Water column simulated in ANSYS Fluent.

2.2 Convolutional Neural Network used for Classification

The different operational conditions generated a series of videos, which is a visual representation of the phenomena
occurring in the reduction model, e.g. the numeric diameter db represented in Tab. 1 and in Fig. 1. This series of videos
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Table 1: Leakage parameters.
Condition # d (mm) v (m/s) db (mm)

1 0.5 0.25 6.45
2 0.63 7.22
3 1.0 7.69
4 1.0 0.24 6.37
5 0.37 6.46
6 0.50 7.28
7 5.0 0.02 6.70
8 0.06 8.05
9 0.09 8.11

were cropped and automatic snapshots using VLC Video Player were taken in order to feed image processing tools and
neural networks. Since video had frame ratio of 30 frame per second, but different durations, differente recording ratio
were used in order to maintain an uniform dataset as described in Tab. 2. A total number of 3409 images of size 48 x
128 pixels were generated. Starting at the height 18 mm of the water column, the area examined comprised 43 mm x 116
mm in the real scale. A recording ratio is defined as the ratio in which the frame is taken. When recording ratio is equal
to one, all frames are captured. On the other hand, when the recording ratio is equal to three, one out of three frames are
captured.

Table 2: Video and dataset specifications.
Condition # Video duration Recording ratio Number of images generated

1 00:00:49 3 394
2 00:00:16 1 394
3 00:00:16 1 395
4 00:00:13 1 330
5 00:00:13 1 329
6 00:00:16 1 395
7 00:00:17 1 425
8 00:00:41 3 332
9 00:00:17 1 414

Due to the transient feature of the videos, there is no bubble present at the scene, the leakage takes some seconds
to begin. For that reason, a classification network was developed to distinguish between a scenario of normality (no
leakage/bubble), abnormal (leakage/bubble). The idea behind is to develop a tool to diagnose any fault in the pipelines.To
train the neural network prediction model, it is necessary to define a target, in this case, presence (in binary classification:
one) or absence (zero). Images were imported into grayscale using scikit-image processing library (Buitinck et al., 2013).
No data pre-processing was necessary to be done, except scaling the input according to the following equation:

x′ =
x

255
(1)

Next step is to split randomly the dataset into train, validation and test. Train set is used to fit and adjust the weights,
and the model is submitted to evaluation using validation set while adjusting the hyperparameters. As the fit process
develops, both become biased, therefore is necessary to check the robustness of the model against the test set at the end,
which was held during training. Here the proportion adopted was 60 %, 24 % and 16 %, respectively.

This data was fed to Convolutional Neural Network developed in Keras environment using Python, backended by
Tensorflow. The architecture employed two convolutional layers, as expressed on Tab. 3. It should be noted that both
convolutional layers have kernel size of 3 x 3 and L2 kernel regularizer factor of 0.01, in which the first have 32 filters
and the second, 64 filters. Pooling Layers have size 2 x 2 with stride 2.

The units employing activation function uses the rectified linear unit - ReLU (Eq. 2a) and the sigmoid function (Eq.
2b). ReLU increases computational efficiency because it is less subject to the vanishing gradient problem (Glorot et al.).
The output of a sigmoidal activation is restrict to the range of 0 to 1, representing a probability score. It maps the event
of fault occurrence according to the value output, if it is more than 50 %, than the event is classified as abnormal situation
(bubble).
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Table 3: Classifier CNN architecture.
Layer (type) Output Shape Number of parameters
Input (128, 48, 1) -
Convolutional 2D + ReLU (126, 46, 32) 320
Max Pooling 2D (63, 23, 32) 0
Batch Normalization (63, 23, 32) 128
Convolutional 2D + ReLU (126, 46, 32) 18496
Max Pooling 2D (30, 10, 64) 0
Flatten (19200) 0
Dropout 20 % (19200) 0
Dense Layer 1 + ReLU (16) 307216
Dense Layer 2 + Sigmoid (1) 17

Total 326,113 trainable+ 64 non-trainable

ReLU(x) = max(0, x) (2a)

S(x) =
1

1 + e−x
(2b)

As loss to be minimized, the average binary cross-entropy for N samples was employed (Eq. 3a). In this notation, q
represent the estimated probability, and p the true probability for each class c. Setting the notation as y and ŷ for the true
and predict outputs, respectively, for a binary case: p ∈ {y, 1− y} and q ∈ {ŷ, 1− ŷ}

Besides the latter, accuracy was also monitored as a metric (Eq. 3b), where the rate of true positives and true negatives
over the total number of samples is computed. The optimizer used was Adam. Batch size corresponds to 128 and the
maximum number of epoches allowed is equal to 100.

CE(p, q) = − 1

N

N∑
n=1

∑
c

pn,c log qn,c = − 1

N

N∑
n=1

[yn log ŷn + (1− yn) log(1− ŷn)] (3a)

ACC =
1

N

N∑
n=1

[ŷn == yn] (3b)

3. RESULTS AND DISCUSSION

3.1 CFD Model

3.2 Classifier CNN

A straightforward manner to assess classification is the confusion matrix, illustrated for each data set (Fig. 2). In
a binary classification problem, there are four possible outcomes: if the input is positive for bubble presence and the
algorithm regards it as positive, then it is denoted as true positive (TP); if there is no bubble on the image and the output
is also negative, this is called true negative (TN); if the data is positive, but the prediction is negative, it is a false negative
(FN); conversely, it is a false positive (FP) (Tharwat, 2020; Sokolova and Lapalme, 2009). No false positives reported
indicates that the classifier does not generate false alarms (or fall-outs) in none of the sets. Also, it is an evidence for
the CNN’s high specificity (TN rate) and precision. For the FDD, this fact brings reliability to the operator, who would
immeaditely recognize the need of taking further actions.

Furthermore, this network possesses a high sensitivity (or recall) regarding the positive detection, with a miss rate of
only 0.2 %. Hence, it can be affirmed that this classifier network has a good predictability regarding bubble detection.
Investigating the false negatives (Fig. 3) gives an indication of the CNN’s capacity. The missed detection in training was
due to the choice of assigning an image as "with bubble" as soon the leakage shows off. Thereby a very small piece of
bubble was missed out to the neural network.

The progress of the neural network during the epochs is shown at Fig. 4. A fast decrease of both validation and
training loss can be seen during the first twenty epochs, while the algorithm converges only after one-hundred iteration
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Figure 2: Confusion Matrices.

Figure 3: Incorrect predictions from training.
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(maximum number set). As the patience adopted was 1.0 x 10−4, the analysis took more time (around twenty minutes)
than if softer conditions were applied, which it would probably stopped early. There is, therefore, a clear trade-off between
computational time and accuracy.

Figure 4: Classifier CNN: Loss and metrics against the epochs.

4. CONCLUSION

A novel methodology using deep learning was presented, combining a classifier and an instance segmentation tool.
The classifier provides precise and sensible computational vision, and it is capable of differentiating between images with
and without bubbles. Good accuracy supports it as a potential fault detector. It could be extended to other applications in
the field of Fault Detection and Diagnosis, not only limiting to this scope.

For future works, the simulation could be broadened to different oil leakage scenarios, but still within minor leak
events, since the concept is to work on the prevention of the leak worsening rather than remediation. As a continuation of
this work, it is suggested to process experimental data in order to validate the methodology.
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