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Abstract 

Subsea images captured on-site can be used to quantify gas leakage in the subsea 

environment. In this work, gas leakage in reduced conditions was simulated by 

Computational Fluid Dynamics (CFD). The aim is to develop a computational vision 

tool to quantify the leakage. The images generated from CFD simulations were 

processed by a convolutional neural network (CNN) structure, the U-Net. A class is 

attributed to each image pixel, and a post-processing algorithm computes the 

corresponding bubble area. Two cases were carried out: image segmentation into two 

(water and bubble) and three classes (bubble interface included). The multi-class U-Net 

shows a good agreement with CFD results compared to the binary one because 

separating the pixels into just two categories leads to bubble diameter overestimation.  

Hence, this method is of potential use in fault detection and diagnosis and could support 

the decision-making process on deepwater leakage remediation. 

Keywords: gas leakage; machine learning; convolutional neural network; process 

safety. 

1. Introduction 

Subsea oil and gas activities demand safety procedures and constant monitoring to 

prevent impact on marine ecosystems and financial losses for the operating companies 

(Figueredo et al., 2022). Several resources might take hold for this purpose. For 

instance, real-time leakage filming is possible with the Remotely Operated Vehicles 

(ROV) equipped with a camera onboard. These images, however, provide information 

only on whether the leak is occurring. For a better assessment, it is of great interest to 

develop a quantitative tool to support the decision-making process of intervention.   

A possible parameter for the leak estimation is the bubble diameter (Jamialahmadi et al., 

2001), which could be computed using image processing techniques. More recently, 

convolutional neural networks (CNN) - a type of Machine Learning (ML) algorithm – 

became part of these techniques (Goodfellow et al., 2016). CNNs are sparsely 

connected neural networks, i.e., not all neurons are connected to the ones of the 

subsequent layers. As a result, it saves plenty of computational resources when dealing 

with tensor data such as images and sounds (Krizhevsky et al., 2012). In a CNN 

structure, the first argument is the input, and the second one, the kernel (filter). 

Typically, the input is a tensor containing the image height, width, and input channels 

(colors). The output is called the feature map, which stores the characteristics of the 
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input data and simultaneously reduces its size by using a kernel smaller than the matrix 

– this is the reason for the sparse connectivity. The kernels’ number, shape, and 

activation function are hyper-parameters defined by the user (Goodfellow et al., 2016). 

Convolutional neural networks have already been applied to fault detection and 

diagnosis problems. Wu and Zhao (2018) verified its usefulness on the Tennessee 

Eastman process. The relation between different process variables and sampling time is 

concatenated into two-dimensional matrices, adequate for CNN computing. The fault 

diagnosis rate scored 88.2 %. Li et al. (2018) proposed a CNN to detect chemical 

leakage in hydrocarbon tanks based on image recognition. They obtained 85.82 % 

accuracy. Bai et al. (2021) developed a real-time classifier of gas dispersion state in a 

bubble column using a novel CNN architecture named BubbleNet. It differentiated flow 

conditions according to bubbles’ size and shape after being trained to a labeled dataset. 

It scored 97.8 % and 97.5 % of the performance for the training and test, respectively.  

In some chemical engineering applications with multi-phase flows, e.g., liquid-liquid 

extraction, it is fundamental to know the particle size distribution, a variable of interest 

for the transport phenomena control. Schäfer et al. (2019) investigated it using a 

particular convolutional neural network, the U-Net.  This network was designed for 

image segmentation (Ronneberger et al., 2015), an application interested in localizing 

objects and boundaries by partitioning the image pixels into various segments. Thus, the 

U-Net permits phase fractions distinction. Another advantage is that post-processing 

enables the calculation of the droplet size distributions from the U-Net output. 

Therefore, the present study aims to develop a system capable of quantifying leakages 

in subsea processes employing the U-Net convolutional neural network. 

2. Methodology 

We carried out reduced model simulations of gas leakages employing Computational 

Fluid Dynamics (CFD). Reduced model is a technique that is used to save 

computational costs by downscaling the original phenomenon. For instance, it 

reproduces an event from the subsea scale to the laboratory. Gas leakages are released 

with different velocities (v) and from different orifice diameters (d).  The initial value 

problem is solved via a finite volume method. The Volume of Fluid (VoF) method is 

employed to model the two-phase gas-liquid flow. Continuity and the unsteady RANS 

(Reynolds-Averaged Navier-Stokes) equations are satisfied in the fluid domain, with the 

classical κ-ε turbulence model being used. The CFD results are being validated with 

experiments and semi-empirical models. They agree on the trend found in the literature 

(Jamialahmadi et al., 2001). The simulation was carried out in ANSYS Fluent software, 

producing videos that represent the leakage. Each video frame generated an image set, 

totalizing 3159 images from the different conditions. 

In a second step, the images are forwarded to a CNN model, called the U-Net structure. 

The main goal of this architecture is to classify each pixel individually as belonging to 

some class. The images are the input for training this network, and the targets are the 

masks created by a segmentation method. The CNN was developed in Keras 

environment employing Python with Tensorflow as backend. The segmentation was 

carried out using the unsupervised Otsu's methodology (Otsu, 1979) in the Scikit Image 

library written in Python. It is an algorithm whose aim is to find a threshold that can 

divide the pixels of a grayscale image into two clusters (classes): foreground f and 

background b. A threshold t is searched, such that the intra-class variance, represented 
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in Eq. 1, is minimized (and the inter-class is maximized as well). The weights ω 

calculated contain the probabilities of a pixel to belong to one of the classes. In this 

case, classes are water (label zero) and bubble (label one). Given the importance of 

phase fraction when accounting bubble diameter, the problem was extended to multi-

segmentation, in which the interface is labeled as number two. Multi-level thresholding 

can be performed as described by Otsu (1979).  

σw(t)
2 = ω𝑏(t)σb

2(t) + ω𝑓(t)σf
2(t) (1) 

The U-Net structure is shown in Figure 1. It is composed of a down-sampling part: 

successive blocks of convolutional 2D layers with filters of window dimension 3x3 and 

initialization “He” followed by 20 % dropout; a second convolutional layer; and a max 

pooling layer, which takes the maximum value over the window 2x2. In the next block, 

the number of filters is doubled (starting with 32). The second part comprises the up-

sampling operations: transposed convolution (deconvolution) layers with filters 2x2 and 

stride 2x2. Information is concatenated from the corresponding feature maps of 

convolutional and deconvolutional layers. Another two convolutional layers are present 

on each block with half of the filters from the previous up-sampling block. The batch 

size is 128. 

 

Figure 1: The U-Net architecture. 

 

The total number of parameters for the binary class and the multi-label segmentation 

problems are 7,759,521 and 7,759,587, respectively. The metric used in this case was 

the Dice-Sørensen coefficient (Eq. 2a), which computes the similarity between the 

actual and predicted samples in relation to the group. It is important to use one-hot 

encoding format for the multi-class problem. Thus, the dice coefficient is extended for 

each class C (Eq. 2b). For the one-hot encoding format, the categorical cross-entropy 

(Eq. 3) was employed as a loss function to be minimized.  
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3. Results and Discussion 

Figure 2 shows an image sample (U-Net input), the corresponding binary segmentation 

mask, and the mask predicted. Bubble statistics are presented in Table 1.  

 

(a)                 (b)                     (c) 

Figure 2: Snapshot of a sample: (a) U-Net input. (b) Mask generated by the binary 

Otsu's thresholding (U-Net target). (c) Mask predicted by the binary U-Net. 

Table 1: Binary U-Net: predicted �̂�𝑏 against expected numerical diameter 𝑑𝑏. 

d (mm) v (m/s) 𝑑𝑏  (mm) count �̂�𝑏 (mm) 

mean 

�̂�𝑏 (mm) 

std. dev. 

0.5 0.25 6.45 350 7.82 0.36 

0.5 0.625 7.22 369 9.79 1.16 

0.5 1.0 7.69 374 10.19 1.95 

1.0 0.24 6.37 317 9.44 0.94 

1.0 0.37 6.46 311 9.95 1.72 

1.0 0.5 7.28 377 11.74 2.01 

5.0 0.02 6.70 373 8.67 0.37 

5.0 0.055 8.05 308 10.51 0.96 

5.0 0.09 8.11 380 12.14 2.30 
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The U-Net output is very similar to the target as the Dice-Sørensen coefficients for 

training and validation imply: 0.9915 and 0.9888, respectively. An overestimation is 

reported when comparing the expected numerical diameter 𝑑𝑏 with the predicted one 

(�̂�𝑏). The reason is that the binary Otsu's thresholding does not set apart the interface 

and the bubble. This factor influences the area for calculation.  

Due to the overestimation, it was decided to investigate further and add a phase fraction, 

turning the problem into a multi-class one. Figure 3 shows the analog result to Figure 2. 

The resulting mask resembles much more to the original image when compared to the 

previous case. The training was also successful. The multi-dice coefficient for training 

and validation reported 0.9507 and 0.9573, respectively. Similarly, the categorical 

cross-entropy loss found was 7.14 x 10-3 (training) and 5.34 x 10-3 (test). The predicted 

diameter by the multi-class U-Net shows a good agreement with the expected numerical 

diameter, as statistics shown in Table 2. Low standard deviations suggest that the 

biggest bubbles are relatively uniform for each dataset. Deviations from the actual 

values do not exceed 10 %, except for the 1.0 mm diameter crack cases.  

 
(a)              (b)                   (c) 

Figure 3: Snapshot of a sample: (a) U-Net input. (b) Mask generated by the multi-label 

Otsu's thresholding (U-Net target). (c) Mask predicted by the multi-class U-Net. 

Table 2: Multi-class U-Net: predicted �̂�𝑏 against expected numerical diameter 𝑑𝑏. 

d (mm) v (m/s) 𝑑𝑏  (mm) count �̂�𝑏 (mm) 

mean 

�̂�𝑏 (mm) 

std. dev. 

0.5 0.25 6.45 350 6.13 0.34 

0.5 0.625 7.22 369 7.23 0.90 

0.5 1.0 7.69 374 7.41 1.23 

1.0 0.24 6.37 317 7.13 0.73 

1.0 0.37 6.46 311 7.34 1.22 

1.0 0.5 7.28 377 8.39 1.37 

5.0 0.02 6.70 373 6.67 0.32 

5.0 0.055 8.05 308 7.68 0.69 

5.0 0.09 8.11 380 8.66 1.74 
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Regarding the model convergence, each model's total training time lasted around 1h30 

min (2.5 - 3 min/epoch) in an Intel Core i5-10210. It has achieved less than 0.10 of loss 

in the fifth epoch, and after 15 epochs, more than 0.90 of Dice similarity coefficient.  

4. Conclusions 

A novel methodology was presented to quantify gas leakages that can be applied in a 

subsea environment, combining convolutional neural networks and a segmentation tool. 

The U-Net enabled the multi-segmentation post-processing to reach good predictability 

of the bubble diameter (less than 10 % deviation in general, the worst case was 15.24 % 

deviation). It is noteworthy that this performance was achieved with a relatively low 

amount of data (3159). For future works, it is suggested to expose the CNN to 

experimental data to validate the methodology. 
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